Codee Training Series
April 26-27, 2022

s7codee

Shift Left Performance

Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Parallelizing MATrix
MULtiplication on the GPU with
OpenMP/OpenACC

Goals:
e Produce OpenACC version for GPU
e Produce OpenMP version for GPU
e Build & run an OpenMP code on the GPU (for problem size N=1500)
e Build & run an OpenACC code on the GPU (for problem size N=1500)

The GPU programming challenges: Example code MATMUL

Example
codes used
in this
introductor
y course

s7codee

Pl

MATMUL

LULESHmk

HEAT

Your code!

Shift Left Performance

opportunities
for offloading

Challenges of GPU acceleration
addressed in introductory course

Minimize data
transfers
across
consecutive
loop nests

Exploit massive
parallelism
through loop
nest collapsing

Identify
defects in
data transfers

Find Optimize
memory layout
for data
transfers

Other GPU programming challenges to be addressed in
next advanced course

Minimize data
transfers

convergence

Identify
auxiliary
functions to be
offloaded

through

loops

X

X - - - X

Probably all of these challenges apply, and even more!

The source code of MATMUL using double**

// C (mxn)=A(mxp)*B (pxn)
void matmul(size_t m, size_t n, size_t p, double **A,
double **B, double **C) {

// Initialization

for (size_t i = 0; i < m; i++) {

o é?????? 2 é'e' Jo<ni g+ Ao // Allocate a dynamic array of doubles to store the matrix data linearized
} LIl =5 size_t matBytes = cols * rows * sizeof(double);
} double *memPtr = (double *)malloc(matBytes);
if (!memPtr) {
return NULL;

// Creates a new dense matrix with the specified rows and columns
double **new_matrix(size_t rows, size_t cols) {
if (rows < 1 || cols < 1)
return NULL;

// Accumulation }
for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < p; k++) {
\ Cl[il[]] += A[il[k] * B[kI[]I;

// Allocate an array of pointers to store the beginning of each row
double **mat = (double **)calloc(rows, sizeof(double *));
if (!mat) {

free(memPtr) ;

return NULL;

}

// Set the row pointers (eg. mat[2] points to the first double of row 3)
for (size_t i = 0; i < rows; i++)
mat[i] = memPtr + i * cols;

main(int argc, char *argv[]) {

// Allocates input/output resources
double **in1_mat = new_matrix(rows, cols);
double **in2_mat new_matrix(rows, cols); .
double **out_mat new_matrix(rows, cols); AR LIRSS

matmul(rows, cols, cols, inl_mat, in2_mat, out_mat);

s7codee shift Left Performance

Profiling and validation of MATMUL

$ gcc -pg -I 1include matrix.c clock.c main.c -o matmul
$./matmul 1000

Note: we use GCC for a quicker profiling
- Input parameters <:: using the GPROF profiling tool, which
n =1000 reports the functions that consumes
_ Executing test most of the runtime.
time (s)=4.589052
size =1000

chksum =20269164323
$ gprof ./matmul

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total .
time seconds seconds s/call s/call name The hOtSPOt function mathI() takes

99.90 4.58 4.58 1 4.58 4.58 matmul almost 100% of the runtime
0.66 4.61 0.03 2 0.02 0.02 rand_matrix

l’/COdee Shift Left Performance

Inspecting the code and optimizing its performance
with Codee

Repeat until the target
performance is achieved
(% runtime reduction,
speedup)
Profiling tool ..
¥ Create performance-optimized code for the

(e.g. GNU gprof) .
hotspot automatically

pwreport

performance pwreport
report pwloops

pwdirectives

Get the performance optimization report for
the whole code base

Directives code

(OpenMP, OpenACC, GCC, Clang)

l'lcodee Shift Left Performance

1: Produce the entry-level report for default #actions
(pwreport --evaluation)

N _ By default multithreading and offloading are
$ pwreport --evaluation main.c:matmul -- -I include . .
Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling disabled in Codee.

main.c:matmul 55

ACTIONS PER OPTIMIZATION TYPE Rationale: Codee forces the user to explicitly
Serial scalar Serial cont enable multithreading and offloading capabilities

main.c:matmul 6 to avoid common errors resulting from a
Target : analyzed directory or source code file misconfigured software environment (eg. lack of

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool) . A

Analyzed lines : relevant lines of code successfully analyzed an OpenMP Comp"er with Ofﬂoad)
Analysis time : time required to analyze the target

actions : total actionable items (opportunities, recommendations, defects and remarks) detected

Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization

multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer

working 17208 hours per year

Profiling : estimation of overall execution time required by this target

SUGGESTIONS
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --evaluation some/other/dir main.c:matmul -- -I include

Use --actions to find out details about the detected actions:
pwreport --actions main.c:matmul -- -I include

Multithreading and offloading actions are filtered by default. Use --include-tags to enable them:
pwreport --include-tags all main.c:matmul -- -I include

You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization
multithreading, offloading), eg.:
pwreport --actions --include-tags serial-scalar main.c:matmul -- -I include

1 file successfully analyzed and @ failures in 21 ms

s7codee shift Left Performance

+7codee

2: Produce the entry-level report for ALL #actions
(pwreport --evaluation --include-tags all)

$ pwreport --evaluation main.c:matmul --include-tags all -- -I include

Lines of code Analyzed lines Analysis time # actions Effo

main.c:matmul 55 64 h 2094€ n/a

ACTIONS PER OPTIMIZATION TYPE) By enab"ng ALL actions in

Serial scalar Serial control Serial memory Vect

s Lo oo e s o the report now identifies 1
' offload opportunity

Target : analyzed directory or source code file

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analyzed lines : relevant lines of code successfully analyzed

Analysis time : time required to analyze the target

actions : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization
multithreading and offloading with 1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer
working 1720 hours per year

Profiling : estimation of overall execution time required by this target

SUGGESTIONS
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --evaluation some/other/dir main.c:matmul --include-tags all -- -I include

Use --actions to find out details about the detected actions:
pwreport --actions main.c:matmul --include-tags all -- -I include

You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vect
multithreading, offloading), eg.:
pwreport --actions --include-tags serial-scalar main.c:matmul -- -I include

1 file successfully analyzed and @ failures in 21 ms

Shift Left Performance

+7codee

3: Produce the report of ALL #actions per type of loops
(pwreport --evaluation --include-tags all --level 2)

$ pwreport --evaluation main.c:matmul --include-tags all --level 2 -- -I include
Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling

main.c:matmul 55

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading

main.c:matnul @ By increasing the details of the

ACTIONS PER LOOP TYPE PER OPTIMIZATION TYPE report, the tool reports that ALL
Loop Type No. Loops Serial scalar Serial control Serial memory Vectorization Multithreading Offloading the aCtionS are identiﬁed in the

Mediun scope of loops that have LOW
figh ® difficulty from the performance
Target : analyzed directory or source code file

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool) ()F)tlfT]I:!Eitl()t\ \IIGE\AIF)()Ir]t

Analyzed lines : relevant lines of code successfully analyzed

Analysis time : time required to analyze the target

actions : total actionable items (opportunities, recommendations, defects and remarks) detected

Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization, multithreading and offloading
with 1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --evaluation some/other/dir main.c:matmul --include-tags all -- -I include

Use --actions to find out details about the detected actions:
pwreport --actions main.c:matmul --include-tags all -- -I include

You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization, multithreading, offloading),
eg.:
pwreport --actions --include-tags serial-scalar main.c:matmul -- -I include

1 file successfully analyzed and @ failures in 22 ms

4: Produce the Codee Actions Report for the target function
(pwreport --actions)

$ pwreport --actions main.c:matmul --include-tags all -- -I include

LOOP BEGIN at main.c:matmul:15:5
15: for (size_t 1 = @; i < m; i++) {

LOOP BEGIN at main.c:matmul:16:9
16: for (size_t j =0; j < n; j++) {

LOOP BEGIN at main.c:matmul:17:13
17: for (size_t k = 0; k < p; k++) {

[PWRO10] main.c:17:13 'B' multi-dimensional array not accessed in row-major order
[RMK@10] main.c:17:13 the vectorization cost model states the loop is not a SIMD opportunity due to strided memory accesses in the loop body

LOOP END
[PWRO39] main.c:16:9 consider loop interchange to improve the locality of reference and enable vectorization

LOOP END
[PWRO35] main.c:15:5 avoid non-consecutive array access for variables 'A', 'B' and 'C' to improve performance

[oPPO@1] main.c:15:5 is a multi-threading opportunity
S e RS S A A7 Each action is reported in the scope of the corresponding loop:
- memory optimizations (loop:16 PWR039 loop interchange)
- vectorization (loop:17 RMKO010 related to PWR010)
- multithreading (loop:15 OPP001)

- offloading (loop:15 OPP003)

s7codee shift Left Performance

5: Produce the detailed actions for the target function
(pwreport --actions --level 2)

$ pwreport --actions main.c:matmul --include-tags all --level 2 -- -I include

in.c:15:5 1 ffl i . .
Coroae) main ;1919 s an offlead opportunity By enabling the detailed report for

- 'forall® over the variable 'C’ OPP003 (offload opportunity) you
SUGGESTION: use pwloops to get more details or pwdirectives to generate directives: obtain Suggestions to invoke
pwloops main.c:matmul:15:5 -- -I include . . .
pwdirectives --omp offload main.c:matmul:15:5 --in-place -- -I include de|reCt|VeS for automatic
pwdirectives --acc main.c:matmul:15:5 --in-place -- -I include annotation Of the source code Wlth
OpenMP and OpenACC offload
More information on: https://www.appentra.com/knowledge/opportunities directives

(note: source code edited
“in-place" by default")

I’/COdee Shift Left Performance .

s7codee

6a: Annotate the code for GPU + OpenMP

(pwdirectives --omp offload)

S pwdirectives --omp offload main.c:matmul:15:5 -o main_omp.c -- -I include
Compiler flags: -I include

Results for file 'main.c':
Successfully parallelized loop at 'main.c:matmul:15:5'
[INFO] main.c:15:5 Parallel forall: variable 'C'

[using offloading]:

[INFO] main.c:15:5 Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'
Successfully created main_omp.c

Minimum software stack requirements: OpenMP version 4.5 with offloading capabilities

Shift Left Performance

Just copy & paste the
suggested invocation of
pwdirectives, which will
rewrite the code for you
adding OpenMP
directives

(note: source code
edited "in-place" by
default" and in this
example we are using
“-0" to write a separate
source code file)

Code rewritten by pwdirectives for GPU + OpenMP

$ cat main_omp.c

// C (mxn)=A(mxp)*B(pxn)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
// Initialization
for (size_t i = @; i < m; i++) {
for (size_t ;J o< n; j+) {

, cwinl=e By default the OpenMP generated code:
) - offloads the computation with "target teams"
/7 Accunulation - manages data transfers with enter/exit data

#pragma omp target enter data map(to: A[@:m])

for(int i@ = ©; i@ < m; ++i0) { due to double** data types

#pragma omp target enter data map(to: A[i@][@:p])

#pragma omp target enter data map(to: B[@:p])
for(int i@ = 0; i@ < p; ++i@) {
#pragma omp target enter data map(to: B[i@][@:n])

#pragma omp target enter data map(to: C[@:m])
for(int i@ = 0; i@ < m; ++i@) {
#pragma omp target enter data map(to: C[i@][@:n])

#pragma omp target teams distribute parallel for shared(A, B, m, n, p) map(to: m, n, p) schedule(static) By defaUIt the OpenMP

fi ize_t i =0; 1 <m; i . . .

O o (ize s 3= 0r Temi e 4 “schedule(static)” is used as it
f ize_t k = 0; k < p; k .
T e i R e is the schedule supported by

y ! the Nvidia programming
}

for(int i@ = 8; i@ < m; ++i8) { environment

#pragma omp target exit data map(from: C[i@][@:n])

#pragma omp target exit data map(from: C[@:m])

+7codee

s7codee

6b: Annotate the code for GPU + OpenACC
(pwdirectives --acc)

S pwdirectives --acc main.c:matmul:15:5 -o main_acc.c -- -I include
Compiler flags: -I include

Results for file 'main.c': In a similar manner, for OpenACC

Successfully parallelized loop at 'main.c:matmul:15:5' [using offloading without teams]:

[INFO] main.c:15:5 Parallel forall: variable 'C' JUSt Copy & paSte the SuggeSted

[INFO] main.c:15:5 Parallel region defined by OpenACC directive ‘parallel’ invocation Of deireCtiveS’ Wh|Ch
[INFO] main.c:15:5 Loop parallelized with OpenACC directive 'loop'

[INFO] main.c:15:&_’> Data region for host-device data transfers defined by OpenACC directive 'dat W|” rewrite the COde for yOLI
Successfully created main_acc.c addlng OpenACC directives

Minimum software stack requirements: OpenACC version 2.0 with offloading capabilities

(note: source code edited
“in-place" by default" and in this
example we are using “-0” to write
a separate source code file)

Shift Left Performance

+7codee

Code rewritten by pwdirectives for GPU + OpenACC

$ cat main_acc.c

// C (mxn)=A(mxp)*B(pxn)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
// Initialization
for (size_t i = 0; i < m; i++) {
for ey 1520 = i JIi By default the OpenACC generated code:
} ' - offloads the computation with "parallel"

- manages data transfers with “data copy

}

// Accumulation
#pragma acc data copyin(A[@:m][@:p], B[@:p][@:n], m, n, p) copy(C[@:m][©:n])
{

n

(note: OpenACC provides a more elegant
solution to manage data transfers for
#pragma acc loop double** data types)

for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < p; k++) {
Clil[j] += A[il[k] * B[kI[]l;

#pragma acc parallel

}

}
} // end parallel
} // end data

Shift Left Performance

7: Benchmarking on Perimutter @NERSC
(using Nvidia toolchain)

$ nvc -fast -I include matrix.c clock.c main.c -o matmul

Remember using the launch, build and run
T amoters scripts to conduct the experiments on
n = 1560 Pelmutter @NERSC.
- Executing test...

time (s)= 3.826362

i 1500 i i
chksun - 68432918175 Note: See example scripts provided.

$ nvc -mp=gpu -fast -gpu=cc80 -I include matrix.c clock.c main_omp.c -o matmul_omp

$./matmul_omp 1500
- Input parameters

n = 1500 MATMUL code runs correctly on the
S s GPU @perimutter and 2.14x faster

time (s)= 1.784999

size - 1500 using OpenMP offload

chksum 68432918175

$ nvc -acc -fast -gpu=cc80 -I include matrix.c clock.c main_acc.c -o matmul_acc

$./matmul_acc 1500
- Input parameters

n = 15600 MATMUL code runs correctly on the
- Executing test...

time (s)= 1.286584 GPU @perimutter and 2.97x faster
e o using OpenACC offload

s7codee shift Left Performance

Final remarks about using Codee at NERSC

s7codee

First, remember to load the Codee module
$ module load codee

The flag --help lists all the options available in the Codee command-line tools
$ pwreport --help

$ pwloops --help

$ pwdirectives --help

You can run Codee command-line tools on the login nodes (no need to run them
on the compute nodes)

Build and run the example codes on the compute nodes using the batch scripts
o Scripts tuned to use the appropriate reservations: codee_day1, codee_day?2

Remember to check the open catalog of rules for performance optimization:

https://www.codee.com/knowledge/

Shift Left Performance

https://www.codee.com/knowledge/

X% www.codee.com

© info@codee.com

L/ ® Subscribe: codee.com/newsletter/
s#codee

© USA - Spain

¥ codee com

in company/codee-com/

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

